甲基氟远红外激光的斯塔克频移

傅恩生

(中国科学院上海光机所)

提 要

本文对甲基氯 (CH₃F) 光泵远红外激光的斯塔克频移做了理论 计算。 指出用 2.9×10⁴~4.4×10⁴ 伏/厘米的电场强度,有可能使甲基氟发射的远红外激光 (496 微米) 与镁原子束的 ${}^{3}P_{0} \rightarrow {}^{3}P_{1}$ 跃迁共振,同时保证甲基氟的泵浦 跃迁与 CO₂ 激光 9P(20)线共振。预期可能的工作跃迁有四组: ${}^{9}R(11, 5, -11), {}^{9}Q(12, 5, -11);$ ${}^{9}R(11, 6, -6), {}^{9}Q(12, 6, -6); {}^{9}R(11, 7, -3), {}^{9}Q(12, 7, -3); {}^{9}R(11, 8, 0),$ ${}^{9}Q(12, 8, 0)_{0}$

Stark frequency shift of the CH₃F far-infrared laser light

Fu Ensheng

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract

Stark frequency shift for the CH_3F optically pumped far infrared laser light has been theoertically calculated. It is pointed out that there is the possibility of resonance between the methylfluoride emmited far infrared laser line (496 μ m) and ${}^3P_0 \rightarrow {}^3P_1$ transition in Mg atomic beam at the electric field intensity of $2.9 \times 10^4 \sim 4.4 \times 10^4 \text{ v/cm}$, meanwhile maintaining resonance between the laser levels of methylfluoride and the CO₂ pumped line 9p(20). It has been predicted that there are four sets of possible operating transitions: ${}^{o}R(11, 5, -11)$, ${}^{o}Q(12, 5, -11)$; ${}^{o}R(11, 6, -6)$, ${}^{o}Q(12, 6, -6)$; ${}^{o}R(11, 7, -3)$, ${}^{o}Q(12, 7, -3)$ and ${}^{o}R(11, 8, 0)$, ${}^{o}Q(12, 8, 0)$.

一、引言

在参考文献[1] 中已经详细讨论了用 Mg 原子束作绝对频率标准的设想。概括起

· 38 ·

红外单色激光共振泵浦 ${}^{3}P_{0}$ 能级粒子至已经 抽空的 ${}^{3}P_{1}$ 能级上,于是,应第二次出现 ${}^{3}P_{1}$ 到基态 ${}^{1}S_{0}$ 的自发辐射跃迁,发射 4571Å 的 荧光。 通过检测 4571Å 荧光强度,或通过 磁泵浦检测粒子束强度,来控制远红外激光 器的振荡频率,预期可实现比铯原子频率标 准准确度高 1~2 个数量级的高准确度的频 标。

问题是目前已知的远红外激光频率,还 不能恰好与 Mg 原子的 ³P₀→³P₁ 跃迁共振。 必须调谐远红外激光,才能 达到 共振 的 要 求。本文从理论上探讨用斯塔克 (stark)效 应调谐甲基氟光泵远红外激光频率的可能 性。

二、甲基氟远红外 激光器的特点

在光泵远红外激光的波长表中^[2,3],甲基 氟的激光波长(496 微米)与镁原子 ³P₀→³P₁ 跃迁吸收波长最接近,因此首先考虑甲基氟 远红外激光的频移。

甲基氟分子的能级图如图 2 所示^[4]。用 选支 CO₂ 激光器 的 9.6 微 米 带 的 *P*(20) 线 (9*P*(20))泵浦甲基氟分子,使 CH₃F 从 *v*₃ 模 (C-F 拉伸振动模)的基振动态(V=0, J=12) 跃迁到高振转能级(V=1, J=12), 其中V是振动量子数,J是总角动量量子 数,图2中K是J在分子对称轴方向的分 量量子数。由于上能级中热激发粒子数很少 (~ $6.6 \times 10^{-3}n_0$, n_0 是基态粒子数密度),所 以泵 浦跃 迁 ^QQ(12),很容易造成V=1、 J=12能级相对于V=1、J=11转动能级 的粒子数反转。甲基氟分子具有很大数值 的永久偶极矩(~1.9德拜),因而容易形 成激光振荡,发射496微米的远红外激 光。

图 2 甲基氟分子的部分振转能级

甲基氟分子具有对称陀螺结构,其振转 谱带由下式确定⁵⁵

 $T' - T'' = \nu_0 + F'(J', K') - F''(J'', K'')$ (1)

其中 v₀ 是谱带的基线, 对 v₃ 模, v₀=1048.61 厘米⁻¹; 谱项 F(J, K)的转动能量为

$$F_{V}(J, K) = B_{V}J(J+1) + (A_{V} - B_{V})K^{2} - D_{JV}J^{2}(J+1)^{2} - D_{IKV}J(J+1)K^{2} - D_{KV}K^{4}$$
(2)

其中 $A_v > B_v \gg D_{Jv}$ 、 D_{JKv} 和 D_{Kv} , 都是转动 常数。 与远红外激光发射相关的跃迁是 $\Delta J = +1$ 、 $\Delta K = 0$ 的跃迁, 相应的频率可由 (1)、(2)和选择定则得 ${}^{9}R(J, K) = \nu_{0} + K^{2}[(A' - A'') - (B' - B'')] - K^{4}[D'_{K} - D''_{K}] + (J+1)[(B' + B'') - K^{2}(D'_{JK} + D''_{JK})] + (J+1)^{2}[(B' - B'') - K^{2}(D'_{JK} - D''_{JK})] - (D'_{J} - D''_{J})] - 2(J+1)^{3}[D'_{J} + D''_{J}] - (J+1)^{4}[D'_{J} - D''_{J}]$ (3)

与吸收泵浦跃迁相关的是 4J=0、4K=0 的 跃迁,其频率值

$$\begin{split} {}^{q}Q(J, K) &= \nu_{0} + K^{2}[(A' - A'') \\ &- (B' - B'')] - K^{4}[D'_{K} - D''_{K}] \\ &+ J(J+1)[(B' - B'') - K^{2}(D'_{JK} - D''_{JK})] \\ &- J^{2}(J+1)^{2}[D'_{J} - D''_{J}] \end{split}$$

特别是当跃迁发生在基电子态中同一个振动态(如V=1)中时,(3)式简化为

$${}^{9}R(J, K) = 2(J+1)[B'-K^{2}D'_{JK}] -4(J+1)^{3}D'_{J}$$
 (5)

根据[6] 给出的 $CH_{a}F$ 分子的转动常数和[7] 对 $CH_{a}F$ 远红外激光 496 微米的频率测量, 由(5) 式得到 J=11, $K=0, 1, \dots, 11$ 的一 组远红外跃迁频率 ${}^{o}R(11, K)$ 以及由(4) 式 得到 J=12, $K=0, 1, \dots, 11$ 的一组泵浦 跃迁频率 ${}^{o}Q(12, K)$,同时将 ${}^{o}R(11, K)$ 与

表 1 CH₃F 的远红外跃迁频率和泵浦跃迁 频率以及有关的频率失谐

K	远红外跃 迁频率 9R(11, K) [兆赫]	 ^QR(11, K)与 Mg³P₀→³P₁ 失谐频率 Δν(R, K) [兆赫] 	泵浦跃迁 频 率 ^Q Q(12, K) [兆赫]	Q(12, K)与 CO ₂ 9P(20) 失谐频率 Δν(Q, K) [兆赫]
0	604358	3035	31383848	-52
1	604344	3021	31383860**	-40
2	604297*	2974	31383944	• 44
3	604234	2911	31384071	171
4	604137	2814	31384260	360
5	604013	2690	31384525	. 625
6	603861	2538	31384880	980
7	603682	2359	31385345	1445
8	603475	2152	31385942	2042
9	603240	1917	31386698	2798
10	602978	1655	31387644	3744
11	602688	1365	31388548	4648
	* 取自[7]	**	1 Contraction	a the second second

Mg³P₀→³P₁ 频率失谐 $\Delta\nu(R, K)$ 和 ^{*Q*}(12, K)与 CO₂9P(20) 的频率失谐 $\Delta\nu(Q, K)$ → 并列于表 1。

三、甲基氟的斯塔克效应

1. 理论

甲基氟是对称陀螺分子,在电场 E 中转 动能级的能量变化是^[8]

其中µ是永久偶极矩, *M*是*J*在外电场*E* 方向的分量量子数。

对于 $\Delta V = 0$ 的 $J + 1 \rightarrow J$ 的跃迁, $\Delta J =$ +1, 当 $\Delta K = 0$, $\Delta M = 0$ 时, 由(6)式和选择 定则得转动能级跃迁频(率)移(动):

$$\Delta \nu_0(R) = \frac{2\mu M K E}{J(J+1)(J+2)h}$$
(7)

而当 $\Delta K = 0$, $\Delta M = \pm 1$ 时, 频移为:

$$\Delta \nu_{\pm 1}(R) = \frac{(2M \mp J)\mu KE}{J(J+1)(J+2)h}$$
(8)

(7)式和(8)式中的量子数 *M* 和 *J* 均为下能级的量子数。

对于 $\Delta V = 1$, $\Delta J = 0$ 的跃迁, 当 $\Delta K = 0$, $\Delta M = 0$ 时, 振转跃迁的频移为:

$$\Delta v_0(Q) = -\frac{(\mu' - \mu'')MKE}{J(J+1)h}$$
(9)

而当 $\Delta K = 0$, $\Delta M = \pm 1$ 时,

$$d\nu_{\pm 1}(Q) = -\frac{\left[(M \pm 1)\mu' - M\mu''\right]KE}{J(J+1)h}$$
(10)

其中 μ' 和 μ'' 分别表示V=1和V=0态的 永久偶极矩。(7)、(8)、(9)、(10)各式是计 算 CH₃F 斯塔克效应的基本理论根据。

远红外激光频移与电场的关系
 我们先考虑 CH₃F v₃ 模 V=1 振动态

• 40 •

表2	CH ₃ F ^Q R(11, K, M)与 Mg ³ P ₀ → ³ P ₁ 失谐频率 $\Delta \nu(R, K)$)
	以及补偿 $\Delta v(R, K)$ 需要的电场强度 E	

K	Δν(R, K) [兆赫]	E=[×104伏/厘米]											
		M = -11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
2	2974	8.05	8.56	9.15	9.83	10.6	11.5	12.6	13.9	15.6	17.6	20.0	24.2
3	2911	5.22	5.56	5.95	6.40	6.94	7.54	8.25	9.10	10.6	11.5	13.3	15.7
4	2814	3.80	4.05	4.33	4.64	5.02	5.45	5,97	6.60	7.36	8.37	9.62	11.4
5	2690	2.91	3.10	3.31	3.56	3.85	4.18	4.57	5.05	5.65	6.43	7.40	8.75
6	2538	2.30	2.44	2.62	2.80	3.04	3.30	3.61	4.00	4.47	5.05	5.83	6.90
7	2359	1.83	1.94	2.08	2.24	2.41	2.62	2.87	3.17	3.54	4.01	4.63	5.48
8	2152	1.46	1.55	1.65	1.78	1.92	2.09	2.29	2.53	2.82	3.20	3.70	4.37
9	1917	1.15	1.23	1.32	1.41	1.52	1.66	1.81	2.00	2.24	2.54	2.93	3.46
10	1655	0.90	0.96	1.02	1.10	1.18	1.28	1.41	1.56	1.74	1.97	2.28	2.69
11	1365	0.67	0.72	0.77	0.82	0.89	0.97	1.06	1.17	1.30	1.48	1.70	2.05

表3 CH3F 泵浦跃迁 ^QQ(12, K, M) 与 CO29P(20) 共振所必须的电场强度 E

K	Δν(Q, K) [兆赫]	E[×104伏/厘米]												
		M = -11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	+1
2	44	0.49	0.47	0.46	0.45	0.43	0.42	0.41	0.40	0.39	0.38	0.37	0.36	0.35
3	171	1.27	1.23	1.19	1.15	1.12	1.08	1.05	1.03	1.00	0.97	0.95	0.92	0.90
4	360	2.00	1.97	1.87	1.82	1.76	1.72	1.66	1.62	1.57	1.53	1.50	1.46	1.43
5	625	2.78	2.69	2.60	2.52	2.45	2.38	2.32	2.25	2.29	2.13	2.08	2.03	1.98
6	980	3.63	3.51	3.40	3.30	3.20	3.10	3.02	2.94	2.86	2.78	2.71	2.64	2.55
7	1445	4.58	4.43	4.30	• 4.16	4.04	3.92	3.81	3.70	3.61	3.51	3.43	3.34	3.26
8	2042	5.68	5.50	5.32	5.15	5.00	4.86	4.73	4.60	4.48	4.36	4.25	4.15	4.05
9	2798	6.90	6.68	6.46	6.27	6.08	5.90	5.75	5.59	5.45	5.30	5.16	5.05	4.93
10	3744	8.30	8.05	7.80	7.56	7.35	7.13	6.93	6.73	6.57	6.37	6.22	6.10	5.93
11	4648	9.40	9.10	8.80	8.55	8.28	8.03	7.81	7.60	7.40	7.20	7.00	6.85	6.68

中 ${}^{o}R(11, 2)$ 的斯塔克频移。在无外加电场时, ${}^{o}R(11, 2)$ 的频率是 604297 兆赫。Mg 原 子 ${}^{3}P_{0} \rightarrow {}^{3}P_{1}$ 跃迁频率是 601323 兆赫。失谐 频率

 $\Delta \nu(R) = 604297 - 601323 = 2974 兆赫$ (11)

为了达到共振泵浦,需要将 ^eR(11, 2) 向低 频方向频移约 3 千 兆 赫。 从(8) 式可以看 出,为向低频方向频移,应该在(8)式中选择 $\Delta M = +1$,且当 M = -J时有最大的频移,即(8)式变成

$$\begin{aligned} \Delta \nu_{+1}(R) &= -\frac{3\mu KE}{(J+1)(J+2)\hbar} \\ &= -18.47 \times 10^4 KE [\,\,\text{i}\text{s}\,] \end{aligned} \tag{12}$$

将(11)代入(12)中,得 $E=8.05\times10^4$ 伏/厘 米。这表示在K=2能级簇,为使 $^{Q}R(11, 2, -11)$ 与 Mg $^{3}P_{0}\rightarrow ^{3}P_{1}$ 跃迁共振,需要加 8.05×10⁴伏/厘米的电场才行。在(12)中利 用了[6]给出的 CH₃F 偶极矩数值。

类似地对 $K=3, 4, \dots, 11$ 各能级 簇中 的 $M=-11, -10, \dots, 0$ 分别计算出使 ${}^{o}R(11, K, M)$ 与 $Mg^{3}P_{0} \rightarrow {}^{3}P_{1}$ 共振所需要 的电场 E,列于表 2 中。

3. 泵浦跃迁 °Q(12, K)的斯塔克频移

在无电场时, $CO_2 9P(20)$ 线只能泵浦 CH₃F的 $^{o}Q(12, 1)$ 和 $^{o}Q(12, 2)$,因为它们 与 9P(20)的失谐较小(<100 兆赫),其他的 K=3以上的各能级簇均不能泵浦。可是, 加上电场后, 泵浦跃迁也发生斯塔克频移, 原 来匹配的变为失谐了, 原来失谐的也可能变 成匹配了。由表 1 看出, 对 $^{Q}Q(12, K)$ 除 $K=1 之外, 其频率都比 CO_2 9P(20)的频率$ $高。为了得到共振泵浦, 应该使 <math>^{Q}Q(12, K)$ 向低频方向频移。从(10)式可见, 取 4M =+1 且 M=J-1, $^{Q}Q(J, K)$ 有最大的负向 频移, 即

 $\Delta \nu_{+1}(Q) = - \left[J(\mu' - \mu'') + \mu'' \right] \frac{KE}{J(J+1)\hbar}$ = -7.84 × 10³ KE[\$\vec{k}\$] (13)

由表1的 $\Delta\nu(Q, K)$ 数据和(13)式,可计算得 不同K和M的泵浦跃迁^Q(12, K, M)与 CO₂9P(20)共振所必须的电场E,列于表3。

泵浦跃迁和远红外发射跃迁的能级
 匹配

为了使下能级粒子泵浦到相应的激光上 能级, 必须使泵浦跃迁 Q(12, K, M) 和发 射跃迁 °R(11, K, M)有相同的上能级。对 于发射跃迁,已如前述,只有选择 dM=+1, $M \leq 0$ 才能在较低的电场 E 得到与 Mg³P₀→ ³P₁ 跃迁共振的频移。对于泵浦跃迁,由 (10)式可知,应该选择 ΔM=+1,才能得到 负频移。对于量子数 M, 虽然 M>0 时需要 的电场较低, 但是考虑到与发射跃迁要求有 相同的上能级,我们只能考虑属于 M < 0 的 跃迁,也就是说,要求泵浦跃迁和发射跃迁有 相同的 M 值。 将表 2 和表 3 的数据作图于 图 3 中, ^QR(11, K, M) 簇曲线与 ^QQ(12, K, M) 簇曲线交迭且有相同 M 值的 点 (这 些点在图3中用虚线连接成曲线),同时落 在量子数 K 的附近(泵浦跃迁的频率失谐在 100 兆赫范围内),才能使两种共振都能得到 满足。可见,比较合适的跃迁有四组.

^QR(11, 5, -11), ^QQ(12, 5, -11);
^QR(11, 6, -6), ^QQ(12, 6, -6);
^QR(11, 7, -3), ^QQ(12, 7, -3);
^QR(11, 8, 0), ^QQ(12, 8, 0)。
对应的电场强度分别为2.9×10⁴, 3.3×10⁴.

3.5×10⁴ 和 4.4×10⁴ 伏/厘米。前两组的能 级跃迁关系示于图 4。

五、结束语

近年来光泵远红外激光的斯塔克调谐已

• 42 •

引起重视^{19-11]}。 文献[9]对 CH₃F 激光的斯 塔克可调谐性进行了较全面的分析。但是关 于与 Mg 原子 ³P₀→³P₁ 跃迁共振的远红外激 光斯塔克频移尚未见报导,由于这种共振要 求的电场强度较高,致使必须考虑泵浦跃迁 的斯塔克效应。本文的特点在于同时考虑到 泵浦跃迁和发射跃迁的斯塔克频移并推出既 能保证发射跃迁和 Mg ³Po→³P1 跃迁共振又 能保证泵浦跃迁与 CO29P(20) 共振的 斯塔 克场强,指出用2.9×104~4.4×104伏/厘米 的电场强度,有可能使甲基氟发射的远红外 激光与 Mg 原子束的 ${}^{3}P_{0} \rightarrow {}^{3}P_{1}$ 跃迁共振,同 时保证甲基氟的泵浦跃迁与CO,9P(20)共 振,预期可能的工作跃迁有四组: °R(11, 5, -11), ${}^{o}Q(12, 5, -11)$; ${}^{o}R(11, 6, -6)$. ${}^{o}Q(12, 6, -6); {}^{o}R(11, 7, -3), {}^{o}Q(12, 7, -3)$ -3; ${}^{\circ}R(11, 8, 0), {}^{\circ}Q(12, 8, 0)_{\circ}$

众所周知,光泵远红外激光器的工作气 压很低(几十毫托),实验上能否获得3~4× 10⁴ 伏/厘米的电场强度还不知道,但是参考 文献[12]的实验对我们很有启发,他们已经 在 30 毫托的气压下,获得5×10⁴ 伏/厘米的 电场强度。

斯塔克效应既能调谐远红外激光的频 率,又能调谐吸收跃迁的频率,因此能用于探 索新的激光波段,提高光泵远红外激光器的 输出功率¹¹¹,这不仅在光频标上,而且在广 泛的远红外光谱学领域中都有重要意义。

参考文献

- [1] F. Strumia, P. Minguzzi, M. Francesconi, R. Benedetti; Proceedings of the 28th Anneal Symposium of Frequency Contral, p. 350 (1974).
- [2] M. Rosenbluh et al.; Appl. Opt., 15 (1976), 2635.
- [3] J. J. Gallagher, M. D. Blye et al.; Infrared Phys., 17 (1976), 43.
- [4] T. Y. Chang: IEEE, Trans. Microwave Theory Tech., MTT-2, (1974), 983.
- [5] W. L. Smith, I. M. Mills; J. Mol. Spect., 11 (1963), 11.
- [6] S. M. Freund et al.; J. Mol. Spectr., 52 (1974), 38.
- [7] E. Bava, A. DeMarchi, A. Godone; Opt. Commun., 21 (1977), 46.
- [8] C. H. Townes, A. L. Schowlow; Microwave Spectr., Chnp. 10. (Mc Graw Hill), 1955.
- [9] M. Inguscio et al.; Infrared Phys., 16 (1976), 453.
- [10] M. Inguscio et al.; Opt. Commun., 21(1977), 208.
- [11] M. S. Tobin, R. E. Jensen; *IEEE J.*, Quant. Electr., **QE-13**(1977), 481.
- [12] M. Redon, M. Fourrier; Rev. Sci. Instrum., 46 (1975), 911.
- [13] D. T. Hodges, J. R. Tucker, T. S. Hartwick; Infrared Phys., 16 (1976), 175.